ACET QUESTION BANK
Quiz-summary
0 of 12 questions completed
Questions:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
Information
ACET Question Bank
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading...
You must sign in or sign up to start the quiz.
You have to finish following quiz, to start this quiz:
Your Result
You scored 0 of 0 points, (0)0 of 12 questions answered correctly
Time Taken:
Time has elapsed
Categories
- Not categorized 0%
- ACET DATA INTERPRETATION 0%
- ACET ENGLISH- Sentence Improvements 0%
- ACET ENGLISH- Sentence Rearrangement 0%
- ACET ENGLISH- Spotting Errors 0%
- ACET ENGLISH- Synonyms and Antonyms 0%
- ACET ENGLISH-Analogies 0%
- ACET ENGLISH-Comprehension 0%
- ACET ENGLISH-Idioms 0%
- ACET ENGLISH-One Word Substitution 0%
- ACET LOGICAL REASONING-Blood Relations 0%
- ACET LOGICAL REASONING-Calendar 0%
- ACET LOGICAL REASONING-Clock 0%
- ACET LOGICAL REASONING-Cubes 0%
- ACET LOGICAL REASONING-Miscellaneous 0%
- ACET LOGICAL REASONING-Seating Arrangement 0%
- ACET LOGICAL REASONING-Sequence and Series 0%
- ACET LOGICAL REASONING-Statement and Assumptions 0%
- ACET LOGICAL REASONING-Syllogism 0%
- ACET MATHS - RATIO AND PROPORTION 0%
- ACET MATHS- Matrices 0%
- ACET MATHS-AP AND GP 0%
- ACET MATHS-Derivatives 0%
- ACET MATHS-Integration 0%
- ACET MATHS-Limits 0%
- ACET MATHS-Miscellaneous 0%
- ACET MATHS-Relations and Functions 0%
- ACET MATHS-Vectors 0%
- ACET STATISICS-Central Tendency and Dispersion 0%
- ACET STATISTICS- Continuous Random Variables and Distributions 0%
- ACET STATISTICS- Correlation and Regression 0%
- ACET STATISTICS- Probability, Permutations and Combinations 0%
- ACET STATISTICS-Discrete Random Variables and Distributions 0%
- CS1-Probability distributions 0%
- FAM-FAM FREQUENCY MODELS THE NUMBER OF CLAIMS 0%
- FAM-FAM REVIEW OF RANDOM VARIABLES I 0%
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
-
Question 1 of 12ACET000003
Question 1
FlagThe solution(s) of the equation $|2 x+23|=|x+11|$ is (are)
Correct
The correct answer is C.
EXPLANATION
$|2 x+23|=|x+11| \Rightarrow 2 x+23=x+11$ or $2 x+23=-(x+11)$.
$\Rightarrow x=11-23$ or $3 x=-11-23$.
$\Rightarrow x=-12$ or $x=-\frac{34}{3}$.
Incorrect
The correct answer is C.
EXPLANATION
$|2 x+23|=|x+11| \Rightarrow 2 x+23=x+11$ or $2 x+23=-(x+11)$.
$\Rightarrow x=11-23$ or $3 x=-11-23$.
$\Rightarrow x=-12$ or $x=-\frac{34}{3}$.
-
Question 2 of 12ACET000004
Question 2
FlagIf $f(x)=4(x-3)$ and $g(x)=x^{2}-7 x+12$, then the value of $x$ for which the ratio $\frac{g(x)}{f(x)}$ is undefined is
Correct
The correct answer is C.
EXPLANATION
Given that $f(x)=4(x-3)$ and $g(x)=x^{2}-7 x+12=(x-3)(x-4)$. It follows that $f(0)=g(0)=0$. Therefore, $\frac{g(x)}{f(x)}$ is undefined when $x=3$.
Incorrect
The correct answer is C.
EXPLANATION
Given that $f(x)=4(x-3)$ and $g(x)=x^{2}-7 x+12=(x-3)(x-4)$. It follows that $f(0)=g(0)=0$. Therefore, $\frac{g(x)}{f(x)}$ is undefined when $x=3$.
-
Question 3 of 12ACET000005
Question 3
FlagIf $f(x)=2 x^{2}+5 x-24$ and $g(x)=3 x+2(x$ real), then the roots of $f(x)+$ $g(x)$ are
Correct
The correct answer is B.
EXPLANATION
Given that $f(x)=2 x^{2}+5 x-24$ and $g(x)=3 x+2(x$ real $)$,
$f(x)+g(x)=2 x^{2}+8 x-22$.
The discriminant $b^{2}-4 a c=64-4(2)(-22)=240>0$. Hence, the roots are real and distinct.
Incorrect
The correct answer is B.
EXPLANATION
Given that $f(x)=2 x^{2}+5 x-24$ and $g(x)=3 x+2(x$ real $)$,
$f(x)+g(x)=2 x^{2}+8 x-22$.
The discriminant $b^{2}-4 a c=64-4(2)(-22)=240>0$. Hence, the roots are real and distinct.
-
Question 4 of 12ACET000008
Question 4
FlagLet
$$
f(x)= \begin{cases}7 & \text { if } x \leq 3 \\ m x+n & \text { if } 3<x<12 \\ 18 & \text { if } x \geq 12\end{cases}
$$$m, n$ real. The function $f(x)$ is continuous everywhere if $(m, n)$ is
Correct
The correct answer is B.
EXPLANATION
$$
f(x)= \begin{cases}7 & \text { if } x \leq 3 \\ m x+n & \text { if } 3<x<12 \\ 18 & \text { if } x \geq 12\end{cases}
$$In order that the function is continuous at $x=3, f(3-)=f(3+)$, that is, $7=3 m+n$.
Similarly, for $x=7, f(7-)=f(7+)$. This gives $12 m+n=18$.
The solution of these two equations is $m=\frac{11}{9}$ and $n=\frac{10}{3}$.
Incorrect
The correct answer is B.
EXPLANATION
$$
f(x)= \begin{cases}7 & \text { if } x \leq 3 \\ m x+n & \text { if } 3<x<12 \\ 18 & \text { if } x \geq 12\end{cases}
$$In order that the function is continuous at $x=3, f(3-)=f(3+)$, that is, $7=3 m+n$.
Similarly, for $x=7, f(7-)=f(7+)$. This gives $12 m+n=18$.
The solution of these two equations is $m=\frac{11}{9}$ and $n=\frac{10}{3}$.
-
Question 5 of 12ACET000009
Question 5
FlagLet $f(x)=-2 x^{3}-9 x^{2}-12 x+1$ be a real function. The interval in which $f(x)$ is increasing in $x$ is
Correct
The correct answer is C.
EXPLANATION
$f(x)=-2 x^{3}-9 x^{2}-12 x+1, f^{\prime}(x)=-6 x^{2}-18 x-12$.
$f^{\prime}(x)=0 \Rightarrow x^{2}+3 x+2=0 \Rightarrow(x \mp 1)(x+2)=0 \Rightarrow x=-1$ or $x=-2$.
The possible intervals are $(-\infty,-2),(-2,-1),(-1, \infty)$.
It is clear that $f^{\prime}(x)0$ for $x \in(-2,-1)$ and $f^{\prime}(x)<$ 0 for $x \in(-1, \infty)$. Hence $f(x)$ is increasing in $(-2,-1)$.
Incorrect
The correct answer is C.
EXPLANATION
$f(x)=-2 x^{3}-9 x^{2}-12 x+1, f^{\prime}(x)=-6 x^{2}-18 x-12$.
$f^{\prime}(x)=0 \Rightarrow x^{2}+3 x+2=0 \Rightarrow(x \mp 1)(x+2)=0 \Rightarrow x=-1$ or $x=-2$.
The possible intervals are $(-\infty,-2),(-2,-1),(-1, \infty)$.
It is clear that $f^{\prime}(x)0$ for $x \in(-2,-1)$ and $f^{\prime}(x)<$ 0 for $x \in(-1, \infty)$. Hence $f(x)$ is increasing in $(-2,-1)$.
-
Question 6 of 12ACET000011
Question 6
FlagFor any two sets $A$ and $B$ if $A \cap B=A \cup B$, then
Correct
The correct answer is A.
EXPLANATION
Obviously, choices B, C and D are not true.
Let $A \cup B=A \cap B$. To prove $A=B$, let $x \in A \Rightarrow x \in A \cup B$
$\Rightarrow x \in A \cap B \Rightarrow x \in A$ and $B \Rightarrow x \in B$. Hence, $A \subset B$.
Similarly it can be proved that $B \subset A$. Hence, $A=B$.
Incorrect
The correct answer is A.
EXPLANATION
Obviously, choices B, C and D are not true.
Let $A \cup B=A \cap B$. To prove $A=B$, let $x \in A \Rightarrow x \in A \cup B$
$\Rightarrow x \in A \cap B \Rightarrow x \in A$ and $B \Rightarrow x \in B$. Hence, $A \subset B$.
Similarly it can be proved that $B \subset A$. Hence, $A=B$.
-
Question 7 of 12ACET000013
Question 7
FlagThe value of $(\sqrt{3}+1)^{4}-(\sqrt{3}-1)^{4}$ is
Correct
The correct answer is A.
EXPLANATION
$$
\begin{aligned}
&(\sqrt{3}+1)^{4}-(\sqrt{3}-1)^{4} \\
&= {\left[(\sqrt{3})^{4}+\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}+\left(\begin{array}{l}
4 \\
2
\end{array}\right)(\sqrt{3})^{2}+\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}+1\right] } \\
&-\left[(\sqrt{3})^{4}-\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}+\left(\begin{array}{l}
4 \\
2
\end{array}\right)(\sqrt{3})^{2}-\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}+1\right] \\
&=2\left[\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}++\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}\right]=2\left[4(\sqrt{3})^{3}++4 \sqrt{3}\right]=32 \sqrt{3} .
\end{aligned}
$$Incorrect
The correct answer is A.
EXPLANATION
$$
\begin{aligned}
&(\sqrt{3}+1)^{4}-(\sqrt{3}-1)^{4} \\
&= {\left[(\sqrt{3})^{4}+\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}+\left(\begin{array}{l}
4 \\
2
\end{array}\right)(\sqrt{3})^{2}+\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}+1\right] } \\
&-\left[(\sqrt{3})^{4}-\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}+\left(\begin{array}{l}
4 \\
2
\end{array}\right)(\sqrt{3})^{2}-\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}+1\right] \\
&=2\left[\left(\begin{array}{l}
4 \\
3
\end{array}\right)(\sqrt{3})^{3}++\left(\begin{array}{l}
4 \\
1
\end{array}\right)(\sqrt{3})^{1}\right]=2\left[4(\sqrt{3})^{3}++4 \sqrt{3}\right]=32 \sqrt{3} .
\end{aligned}
$$ -
Question 8 of 12ACET000014
Question 8
FlagThe value of $\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{1}{7}$ is (assuming all the angles to be in the first quadrant)
Correct
The correct answer is C.
EXPLANATION
$\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{7}=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \times \frac{1}{7}}\right)=\tan ^{-1}\left(\frac{21+4}{28-3}\right)$. $=\tan ^{-1}(1)=\frac{\pi}{4}$.
Incorrect
The correct answer is C.
EXPLANATION
$\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{7}=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4} \times \frac{1}{7}}\right)=\tan ^{-1}\left(\frac{21+4}{28-3}\right)$. $=\tan ^{-1}(1)=\frac{\pi}{4}$.
-
Question 9 of 12ACET000016
Question 9
FlagThe value of $\sum_{j=1}^{n}(3 j-1)^{2}$ is
Correct
The correct answer is D.
EXPLANATION
$\sum_{j=1}^{n}(3 j-1)^{2}=\sum_{j=1}^{n}\left(9 j^{2}-6 j+1\right)=9 \sum_{j=1}^{n} j^{2}-6 \sum_{j=1}^{n} j+\sum_{j=1}^{n} 1=$ $9\left(\frac{n(n+1)(2 n+1)}{6}\right)-6\left(\frac{n(n+1)}{2}\right)+n=\frac{n}{2}\left[6 n^{2}+3 n-1\right]$.
Incorrect
The correct answer is D.
EXPLANATION
$\sum_{j=1}^{n}(3 j-1)^{2}=\sum_{j=1}^{n}\left(9 j^{2}-6 j+1\right)=9 \sum_{j=1}^{n} j^{2}-6 \sum_{j=1}^{n} j+\sum_{j=1}^{n} 1=$ $9\left(\frac{n(n+1)(2 n+1)}{6}\right)-6\left(\frac{n(n+1)}{2}\right)+n=\frac{n}{2}\left[6 n^{2}+3 n-1\right]$.
-
Question 10 of 12ACET000017
Question 10
FlagThe conjugate of $\frac{(1+2 i)(2-i)}{(3-2 i)(2+3 i)}$ is
Correct
The correct answer is A.
EXPLANATION
$\frac{(1+2 i)(2-i)}{(3-2 i)(2+3 i)}=\frac{2-i+4 i-2 i^{2}}{6+9 i-4 i-6 i^{2}}=\frac{2+3 i+2}{6+5 i+6}=\frac{3 i+4}{5 i+12}=\frac{3 i+4}{5 i+12} \times \frac{5 i-12}{5 i-12}$
$$
=\frac{15 i^{2}-36 i+20 i-48}{(5 i)^{2}-(12)^{2}}=\frac{-15-16 i-48}{-25-144}=\frac{63+16 i}{169} .
$$Hence the conjugate of $\frac{(1+2 i)(2-i)}{(3-2 i)(2+3 i)}$ is $\frac{63}{169}-\frac{16 i}{169}$.
Incorrect
The correct answer is A.
EXPLANATION
$\frac{(1+2 i)(2-i)}{(3-2 i)(2+3 i)}=\frac{2-i+4 i-2 i^{2}}{6+9 i-4 i-6 i^{2}}=\frac{2+3 i+2}{6+5 i+6}=\frac{3 i+4}{5 i+12}=\frac{3 i+4}{5 i+12} \times \frac{5 i-12}{5 i-12}$
$$
=\frac{15 i^{2}-36 i+20 i-48}{(5 i)^{2}-(12)^{2}}=\frac{-15-16 i-48}{-25-144}=\frac{63+16 i}{169} .
$$Hence the conjugate of $\frac{(1+2 i)(2-i)}{(3-2 i)(2+3 i)}$ is $\frac{63}{169}-\frac{16 i}{169}$.
-
Question 11 of 12ACET000019
Question 11
FlagThe area bounded by the curve $y=\frac{x^{2}}{2}$, the lines $y=0, x=1$ and $x=3$ is
Correct
The correct answer is B.
EXPLANATION
The area bounded by the curve $y=\frac{x^{2}}{2}$, the lines $y=0, x=1$ and $x=3$ is $\int_{1}^{3} \frac{x^{2}}{2} d x=$ $4 \frac{1}{3}$.
Incorrect
The correct answer is B.
EXPLANATION
The area bounded by the curve $y=\frac{x^{2}}{2}$, the lines $y=0, x=1$ and $x=3$ is $\int_{1}^{3} \frac{x^{2}}{2} d x=$ $4 \frac{1}{3}$.
-
Question 12 of 12ACET000021
Question 12
FlagThe approximate positive root of $x^{2}-2=0$, obtained after three iterations by NewtonRaphson method starting from the initial value $x_{0}=1$, is
Correct
The correct answer is A.
EXPLANATION
Given that $f(x)=x^{2}-2 \cdot f(1)=-1$ (-ve) and $f(2)=2(+\mathrm{ve})$. Hence, there exists a positive root between 1 and 2. $f^{\prime}(x)=2 x$.
The $n^{\text {th }}$ iteration: $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
We start with the initial value $x_{0}=1 . x_{1}=1-\frac{-1}{2}=1.5$;
$x_{2}=1.5-\frac{\frac{9}{4}-2}{3}=\frac{17}{12}=1.41667 ; x_{3}=\frac{17}{12}-\frac{\left(\frac{17}{12}\right)^{2}-2}{\frac{17}{6}}=\frac{577}{408}=1.41426$.
Incorrect
The correct answer is A.
EXPLANATION
Given that $f(x)=x^{2}-2 \cdot f(1)=-1$ (-ve) and $f(2)=2(+\mathrm{ve})$. Hence, there exists a positive root between 1 and 2. $f^{\prime}(x)=2 x$.
The $n^{\text {th }}$ iteration: $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
We start with the initial value $x_{0}=1 . x_{1}=1-\frac{-1}{2}=1.5$;
$x_{2}=1.5-\frac{\frac{9}{4}-2}{3}=\frac{17}{12}=1.41667 ; x_{3}=\frac{17}{12}-\frac{\left(\frac{17}{12}\right)^{2}-2}{\frac{17}{6}}=\frac{577}{408}=1.41426$.